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PERSPECTIVE

The future of zoological taxonomy is integrative, not minimalist
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Roughly 18,000 species are described annually as new to science, while estimated extinction rates are comparable to or
even exceeding these new discoveries. Considering the estimates of up to 15 million extant eukaryotic species on Earth,
of which only about 2 million have been described so far, there has been a recent ‘boom’ of new potential approaches
to more quickly discover and describe the millions of unknown species. This deficit is particularly noted in hyperdiverse
taxa, as the current rate of species discovery is considered too slow. Recently, a ‘minimalist’ alpha taxonomic approach
was proposed, relying solely on DNA barcoding and a habitus photograph, in a claimed effort to expedite the naming of
new species to combat the so-called taxonomic impediment. In this paper, we point to limitations of minimalist
taxonomy, present arguments in favour of the integrative approach, and finally explore a number of potential solutions
to combat the taxonomic impediment in hyperdiverse taxa without sacrificing utility and quality for apparent speed
and quantity.

Key words: automated morphological classification, biodiversity, citation mandate, eDNA, hyperdiverse taxa, integrative
taxonomy, museomics, species description, systematics, taxonomic impediment

Introduction
It is estimated that there are up to 15 million extant
eukaryotic species on Earth, of which only about 2 mil-
lion have been discovered and described so far (Mora
et al., 2011; Zamani et al., 2021). This puts taxonomists
in a race against time to discover and describe the vast
unknown portion of Earth’s biodiversity before it is lost
as a result of the Anthropocene mass extinction. Each
year about 18,000 species are described as new to sci-
ence, with the annual species loss similar to, or even
higher than, the rate of new species discoveries (Zamani
et al., 2021), excluding the annual number of new syno-
nyms which could be quite significant (e.g., around 20%

of names in insects; Stork, 1997). While naming new
species is important, it is but one of the goals taxono-
mists are tasked with, the others being to circumscribe,
properly describe and classify new taxa alongside their
relatives (Seberg et al., 2003), as well as to curate exist-
ing names. Whereas naming follows enforced conven-
tion, species delimitation and their systematic
relationships are scientific hypotheses rather than facts
(Pante et al., 2015). As such, these practices need to be
formulated in a way that clarifies species’ differences
from other previously described species via a clear diag-
nosis (i.e., unique traits or combinations of traits), as
well as a suite of shared traits representing the ancestor-
descendant lines that connect all life (ICZN, 1999;
Pante et al., 2015). This process can be time consuming,
and new approaches are needed to quickly discover and
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accurately describe millions of currently unknown spe-
cies in a timelier manner.
Since the foundational paper by Hebert et al. (2003)

introducing a standardised fragment of mitochondrial
cytochrome oxidase I (COI; i.e., a molecular ‘barcode’)
as a means of identifying known animal species, DNA
barcoding has served a major role in biological sciences.
In particular, DNA markers, especially DNA barcodes,
have been a boon to species discovery when comple-
mented with morphological studies and additional
molecular and ecological data, made possible by having
DNA barcodes of previously described species (e.g.,
Vieites et al., 2009). Its utility in systematics is widely
recognised, and since its inception, DNA barcoding has
been seen as a useful, albeit imperfect, tool in integra-
tive taxonomy (e.g., Dayrat, 2005; DeSalle et al., 2005;
Wheeler et al., 2004). A recent move towards a
‘minimalist’ alpha taxonomic approach relies solely on
a consensus DNA barcode and a habitus photograph
(Meierotto et al., 2019; Sharkey et al., 2021b). This
effort to expedite the naming of new wasp species to
combat the so-called taxonomic impediment represents a
problematic inflexion in the applications of DNA bar-
coding, contrary to principles professed by its own pro-
ponents when this discussion first emerged in the early
2000s. In several DNA barcoding proponents’ own
words, “the discovery of previously undescribed species
is augmented when information on morphological and
ecological characters are fused with DNA barcodes”
(Hebert & Barrett, 2005). Also, “we emphasize that
DNA barcoding seeks merely to aid in delimiting spe-
cies – to highlight genetically distinct groups exhibiting
levels of sequence divergence suggestive of species sta-
tus. By contrast, DNA barcodes – by themselves – are
never sufficient to describe new species” (Hebert &
Gregory, 2005). Finally, “it is important to note that it
[DNA barcoding] does not seek to replace the Linnaean
system of classification, and thus differs fundamentally
from proposals to create a new taxonomic system based
solely on DNA” (Gregory, 2005). “Hence, we urge
strong collaborations between barcoders and
taxonomists” (Hebert & Barrett, 2005).
This recent shift towards a DNA barcoding-based

minimalist taxonomy materialises early concerns that it
would try to replace an integrative taxonomy and classi-
fication system, as expressed by dozens of taxonomists
and systematists (e.g., Carvalho et al., 2007; Ebach &
Holdrege, 2005; Lipscomb et al., 2003; Moritz &
Cicero, 2004; Seberg et al., 2003; Will et al., 2005) and
has received substantial criticism recently (Ahrens et al.,
2021; Engel et al., 2021; Meier et al., 2022; Zamani
et al., 2021, 2022). While we note the inconsistency
above for historical context, our goal here is to highlight

why DNA taxonomy, and DNA barcoding in particular,
is fraught with failure in resolving the taxonomic
impediment of any group, particularly of hyperdiverse
taxa. In turn, we present arguments in favour of the
more robust integrative approach to taxonomy and sys-
tematics, and further explore potential solutions to the
taxonomic impediment in hyperdiverse taxa, without
sacrificing utility and quality of taxonomic descriptions
for perceived speed and quantity.

Why (not) move toward a minimalist
barcoding-based taxonomy?
Minimalist taxonomy’s reliance on a single mitochon-
drial barcode is at the crux of the problem. It has been
known for decades that mitochondrial phylogenies fre-
quently depart from the species tree for several reasons,
such as introgression, incomplete lineage sorting, and
infection with reproduction-manipulating endosymbionts
in the case of arthropods and filarial nematodes (Funk
& Omland, 2003). Even if consistent with the evolution-
ary history of a species, a mitochondrial barcode might
be uninformative for delineating species, particularly in
rapidly speciating, hyperdiverse groups (Wiemers &
Fiedler, 2007). Thus, it comes without surprise that bar-
coding approaches that incorporate the multispecies
coalescent into the analysis of multilocus sequence data
have been proposed (Dowton et al., 2014), even if these
more robust statistical methods tend to over-split species
in widespread taxa, especially if geographical sampling
is inadequate (e.g., Chambers & Hillis, 2020; Mason
et al., 2020). Because mitochondrial DNA has clear and
long-known evolutionary blind spots, DNA barcoding as
the sole source of information for species delineation
and description does not serve taxonomy and should be
discouraged.
The main argument put forward in favour of the min-

imalist approach is the unsubstantiated claim that it
accelerates the naming of new species as a strategy to
combat the taxonomic impediment (Sharkey et al.,
2021a). Nevertheless, formal analyses of the impacts of
integrative taxonomy did not find a slowing effect of
integrating across multiple types of data for species
delimitation and description (Pante et al., 2015). If any-
thing, taxonomists should address bottlenecks imposed
at different stages of the current taxonomic process, not
replace it with subpar solutions. It is important to opti-
mise taxonomic practice so that new descriptions are
less likely to require revision in the foreseeable future, a
goal that minimalist taxonomy is unwilling to achieve.
Of note is that the proponents of the minimalist
approach perform the minimum effort needed to barely
conform to taxonomic naming conventions, leaving the
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more time and effort consuming tasks of providing the
integrative redescriptions to “future revisers” (Sharkey
et al., 2021a). For many taxonomists, professionals and
non-professionals alike, the ‘joy of discovery’ and nam-
ing of species are major driving forces keeping them
active in such an underfunded field. Not only is taking
away this small reward from these researchers unfair, in
the long run it further harms taxonomy by discouraging
taxonomists from conducting research on certain groups.

Is morphology dead?
The gold standard in taxonomic species descriptions is
still morphology, despite a sustained increase over the
years in integrative studies that also include other data
types (Pante et al., 2015; Bond et al., 2021).
Morphology helps us connect all life, former and cur-
rent. Most species that have evolved are now extinct
and many of these were diverse, ecologically important,
and distinct from their living relatives (Wiens, 2004).
This means that if we do not take fossil lineages into
consideration, we would be ignoring over 99% of the
taxa that have ever lived (Novacek & Wheeler, 1992).
Minimalist taxonomy effectively excludes palaeontology
from our study of evolutionary history and species rela-
tionships. As argued several times by Wheeler (2008;
2009; 2018), taxonomy, although essential for environ-
mental biology, is at heart an evolutionary science.
Taxonomy seeks to recognize evolutionary history, to
describe what makes species unique (not just what
makes them identifiable) and what they share with other
species, and to phylogenetically classify them. These
goals are not achievable based on DNA alone, and cer-
tainly not with single (or few) molecular markers.
Furthermore, while morphology is one type of data,

different phenotypic traits are the manifestation of hun-
dreds or thousands of genes, whose expression is chan-
nelled during development and filtered by ecological
constraints of each species over evolutionary time.
Thus, morphology is a rich source of information for
robust taxonomic inference, although not without its
own limitations. One of the frequent criticisms against
morphology is the existence of cryptic species, which
might reflect low resolution of traditional characters
rather than a real absence of morphological differences
should higher resolution methods be employed.

Integrative taxonomy is dead, long live
integrative taxonomy!
What can be done to avoid one type of data from mis-
representing species diversity? The solution lies in inte-
grative approaches. Olave et al. (2014) concluded that

without integrating multiple lines of evidence, interpret-
ing what DNA-based approaches actually delimit will
remain ambiguous. Integrative approaches narrow the
parameter space where species are undetected in groups
differentially diverging along different data type axes
(Edwards & Knowles, 2014), and over-splitting is
avoided especially if delimitations are congruent across
different methods (Carstens et al., 2013). Furthermore,
the use of integrative data also provides coherence
between species detection and description (Edwards &
Knowles, 2014), which should help ease the taxonomic
impediment. There are multiple recent examples in
which integrative strategies were successful at delimit-
ing species, even in the case of complex evolutionary
histories, morphological crypsis and hyperdiverse groups
(e.g., Abdala et al., 2021; Arthofer et al., 2013; Brasero
et al., 2020; Chaplin et al., 2020; Costa & Katz, 2021;
Feliciano et al., 2021; Gebiola et al., 2012; Lima et al.,
2020; Newton et al., 2020; Papakostas et al., 2016;
Puillandre et al., 2012; Wachter et al., 2015; Weston
et al., 2020). Furthermore, reanalysis of COI barcode
clusters (“BINs”) computed by BOLD Systems
(Ratnasingham & Hebert 2007) already indicate minim-
alist species are unstable, which would require rede-
scription with additional evidence (Meier et al., 2022).

How would real-world examples have been
affected by the minimalist approach?
Our objections to the minimalist approach are best illus-
trated by real-world examples. We argue that the
approach produces species descriptions that are not
usable by the taxonomic community, would alienate
non-professional taxonomists (who represent the major-
ity in some groups) and parataxonomists, does not
address the true bottleneck of species discovery as
opposed to species description, and in the long run
would slow down species descriptions instead of speed-
ing them up.
Much of the earlier discussion surrounding the use of

DNA barcoding has occurred on theoretical grounds
(e.g., Moritz & Cicero, 2004): what would the perform-
ance of DNA barcoding be, given the behaviour of
mitochondrial DNA or the levels of divergence observed
between species? How would DNA taxonomy impact
species discoveries? We are now at a stage where we
can directly assess the potential use of DNA barcoding
in driving taxonomy, in particular in hyperdiverse
groups. We take as our real-world examples tropical
parasitoid wasps, African Great Lakes’ cichlids, and
European butterflies. We feel these represent good test
cases. Hyperdiverse taxa such as parasitoid wasps were
the target group for the minimalist approach. Cichlids
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and butterflies are well-studied, with barcode data avail-
able, which allow de facto statements about applicability
of a DNA barcoding-based minimalist approach.

Ichneumon wasps. Consider Ichneumonidae as a group
that contains more species than its sister family
Braconidae. Dal Pos and Rousse (2018) described a new
species of Genaemirum Heinrich, 1936 based on the
dichotomous key by Rousse et al. (2016), which in turn
was based (with modification) on the extensive work by
Heinrich (1967), who provided the first and, so far, only
taxonomic treatment of all Afrotropical genera of the
subfamily Ichneumoninae (over 400 genera and 4300
species worldwide). Johansson (2020) described five
new species of Diplazontinae from Sweden after
Klopfstein’s (2014) revision of the group. Di Giovanni
et al. (2018) identified a new species of the genus
Misetus Wesmael, 1845 thanks to the key to the genera
of Phaeogenini by Selfa and Diller (1994). Di Giovanni
et al. (2015) and Di Giovanni and Reshchikov (2016)
were able to fill the gaps of distribution of
Ichneumonidae in Italy and record several species new
to the country using the morphological keys and diagno-
ses provided by different European authors (e.g.,
Tereshkin, 2009). Moreover, many other taxonomic
revisions are expected to be extremely useful in the
years to come (e.g., Pham et al., 2020; Rousse et al.,
2013). Sorting through an estimated >100,000 speci-
mens of Ichneumonidae wasps from Uganda, morpho-
logical analysis of 456 individuals of the subfamily
Rhyssinae resulted in a review of all Afrotropical rhys-
sines and the description of two new species (Hopkins
et al., 2019). The sorting into morphospecies was pos-
sible due to a previous review by Rousse and van Noort
(2014) of 30 previously described individuals and
twelve known species.
Without morphology, an identification key would be

replaced by the necessity to DNA barcode all speci-
mens. The alternative of barcoding just some specimens
would require splitting them into preliminary morpho-
species to select which specimens to barcode. This
rather defeats the stated purpose of minimalist descrip-
tions, which is to save time and effort. Based on the
examples mentioned above, morphological keys can be
extremely functional for identifying even hyperdiverse
taxa, and the idea that they do not work lacks factual
support. For example, it is doubtful Varga (2020) would
have described a new Kenyan rhyssine species, had
there not been multiple morphological characters and an
identification key available. We do recognize that mor-
phological keys are not always convenient, accurate, or
easy to use, and do sometimes require specialised ter-
minology and some expertise to understand and

implement. However, this is a good argument for inte-
grating molecular data and investing in taxonomy and
taxonomic training to improve both knowledge of spe-
cies in such taxa, and the quality and ease of use of
data to make keys more reliable, not as an excuse to
abandon integrative studies. One recent example on how
keys can be made more efficient is given by Fernandez-
Triana (2022).
The central argument of increased speed has not been

properly demonstrated by the minimalist taxonomy
either. One important time sink pre-dates the act of
describing species, and is ‘hidden’ in the form of sam-
pling, building expertise and initial sorting of diversity
usually based on morphology (known and unknown), as
also recently noted but then not quantified by
Fernandez-Triana (2022). For instance, it took Hopkins
et al. (2019) several years to separate the parasitoid
wasps, about a year to sort the rhyssines into species
and write the descriptions. A very generous estimate
would be that three months would have been saved
using a minimalist approach, out of a total of at least
three years at the cost of slowing down future work by
established taxonomists and preventing new taxonomists
from arising.

African Great Lakes’ cichlids. The most spectacular
examples of adaptive radiation in extant vertebrates are
arguably the cichlids inhabiting the African Great Lakes
(e.g., Gante & Salzburger, 2012). While the cichlid fau-
nas from Lakes Malawi and Victoria are still mostly
undescribed and number in the hundreds, the cichlid
assemblage from Lake Tanganyika is comparatively
well-known. In this older lake, the circa 250 species
belong to 16 tribes defined on morphological grounds
and confirmed by molecular data. These species radiated
in situ from a common ancestor about 9.7Ma (Ronco
et al., 2020; 2021), of which �86% are described, and
the remaining awaiting formal treatment are mostly
‘known unknowns’ (Ronco et al., 2020).
In a test of the potential of DNA barcoding of the

Tanganyikan assemblage, out of 96 species of littoral
cichlids assayed, Breman et al. (2016) successfully iden-
tified only 73% of the valid species included. The poten-
tial for discovery was not much better, either
underestimating by �30% (70 hypothetical molecular
operational taxonomic units (MOTUs) using the General
Mixed Yule Coalescent) or overestimating species-level
diversity by �10% (115 hypothetical MOTUs using the
Automatic Barcode Gap Discovery method). BINs are
thus a poor proxy to species in the case of
Tanganyikan cichlids.
The likely reasons for this poor behaviour of DNA

barcoding in identifying or delineating Tanganyikan
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cichlids reported by Breman et al. (2016) stem from a
combination of introgression and incomplete lineage
sorting (i.e., sharing of haplotypes across species and
apparent polyphyly; e.g., Brawand et al., 2014; Gante
et al., 2016; Nevado et al., 2011), associated with fast
cladogenesis observed in speciose groups (i.e., lack of
universal resolution of the barcode at the species level).
The results certainly do not reflect major issues with
species validity, as morphology and nuclear genomes
both support the vast majority of the species recognized
(Ronco et al., 2021). Thus, limitations of DNA barcod-
ing are overcome with an integrative approach to identi-
fication and delineation.
Considering that these difficulties are readily apparent

in the oldest of cichlid radiations, a minimalist DNA
taxonomy would be deemed unfeasible in younger radia-
tions such as those of lakes Malawi and Victoria, which
are far more speciose and have been boosted by ancient
hybridisation (Malinsky et al., 2018; Meier et al., 2017).
Species boundaries permeable to introgression (in par-
ticular of mtDNA) and rapid cladogenesis are attributes
of hyperdiverse groups. These are the groups for which
Sharkey et al. (2021b) claim a minimalist DNA tax-
onomy would speed up naming of new species, although
that would be done at the cost of rigour, accuracy, or
reliability in identifying or delineating new species.

Butterflies, other insects, and the ‘Wolbachia effect’.
There is no other insect group so intensively studied as
European butterflies, save perhaps Drosophila Fall�en,
1823. Given the attractiveness of European butterflies
and the long history of their study, we know a lot about
their distributional changes, ecologies and life histories.
This was followed by the emergence of national and
international barcoding programs (e.g., Lukhtanov et al.,
2009; Dinc�a et al., 2011; Hausmann et al., 2011; Dinc�a
et al., 2015; Litman et al., 2018; Dinc�a et al., 2021). In
this well-known group, species delineation methods
revealed a portion of polyphyletic, paraphyletic or bar-
code-sharing species. For example, Dinc�a et al. (2011)
showed that in 180 Romanian butterfly species, only
162 species formed separate barcode clusters, three spe-
cies pairs shared barcodes, four species were paraphy-
letic, two species pairs were polyphyletic and eight
species had intraspecific divergence (p-distances) over
2.0%, which, according to the minimalist approach,
would merit their description as a complex of cryptic
species for which morphology ‘fails’. Similar numbers
were obtained for other countries (Hausmann et al.,
2011; Dinc�a et al., 2015; Litman et al., 2018). Recently,
a compilation of 22,306 sequences of 459 European
butterfly species (97% of known European species) was
analysed by Dinc�a et al. (2021). In this dataset, the 459

species were assigned to 441 BINs, in which 65 BINs
were taxonomically discordant, and 16 were singleton
(i.e., not including any other sequences), 69 species
shared barcodes and 56 species had a divergence greater
than 2.5%.
A comparable picture arose for the North American

butterfly fauna (D’Ercole et al., 2021): in the 814
American butterfly species, 573 species (out of 755 with
more than 2 specimens) formed distinct clusters, 151
species were polyphyletic or paraphyletic, 125 species
shared barcodes and 79 species had a divergence greater
than 2.5%. An analogous analysis of dragonflies, a gen-
etically distant insect order, produced similar results
(Geiger et al., 2021), indicating that such patterns of
non-monophyly are widely distributed among insects,
and they might be even much broader: in an often-cited
review on mitochondrial phylogenies of closely related
animal species groups, over 20% of �2,300 species
assayed showed species-level paraphyly or polyphyly
(Funk & Omland, 2003). This would result in an
unacceptably high percentage of incorrectly described
species should only DNA barcodes be used to delin-
eate species.
Mutanen et al. (2016) explored the amount of bias in

European Lepidoptera in barcode paraphyly and poly-
phyly. They investigated 4,977 species (41,583 speci-
mens) and found 465 non-monophyletic species using a
neighbour-joining method and 469 species using the
Maximum Likelihood method of tree reconstruction.
These can be explained by over-splitting or cryptic spe-
ciation (estimated at 31.8%). However, they also recog-
nized that non-monophyly increases when more
specimens are investigated and is higher if the species
are relatively young.
Such large-scale studies serve as a background for

detection of cryptic diversity. The ideal procedure to
follow them up with and produce new species identifica-
tions would include sequencing nuclear DNA, searching
for morphological and life history traits, and (ideally)
microbial screening. This array of techniques was used
when delineating the European species of Spialia
Swinhoe, 1912 (Hern�andez-Rold�an et al., 2016). In
many cases, the issues of barcode non-monophyly can
be solved with detailed studies at intraspecific- and
closely related species-group levels. Some butterfly spe-
cies display mtDNA over-splitting: Thymelicus sylvestris
(Poda, 1761) has six mitochondrial lineages, but these
are not recovered by ddRADseq data (Hinojosa et al.,
2019). An analogous pattern was observed in Melitaea
didyma (Esper, 1778) (Dinc�a et al., 2019). Melitaea
ornata Christoph, 1893 includes two separate mitochon-
drial groups and one of them clusters with its sister spe-
cies Melitaea phoebe (Denis & Schifferm€uller, 1775),
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whereas nuclear genes clearly distinguish two species
(T�oth et al., 2017). Younger groups, where speciation is
ongoing, can display incomplete lineage sorting, identi-
fiable by an absence of a predictable biogeographical
pattern (Funk & Omland, 2003; Toews & Brelsford,
2012). The introgression of mitochondrial DNA occurs
via hybridisation, which is observable in the butterfly
genus Colias Fabricius, 1807 (Wheat & Watt, 2008).
In addition, mitochondrial DNA inheritance patterns

of arthropods and filarial nematodes are affected by the
co-inherited bacteria Wolbachia Hertig, 1936 (e.g.,
Hurst & Jiggins, 2005). Ahmed et al. (2015) estimated
the presence of endosymbiotic Wolbachia in 80% of
Lepidopterans, with 25–33% infected individuals. As
Wolbachia interferes with reproduction of its hosts, it
might cause a swift spread through a population, hitch-
hiking one mitochondrial type. Mitochondrial clades
with a deep divergence associated with the presence/
absence of Wolbachia were observed in both Phengaris
nausithous (Bergstr€asser, 1779) and P. teleius
(Bergstr€asser, 1779) (Ritter et al., 2013). If two bacterial
strains are present, they could each bear a different
mitotype, causing a deep mitochondrial split, as
observed in American Coenonympha tullia (M€uller,
1764) (Kodandaramaiah et al., 2013). Furthermore,
Wolbachia might mediate introgression, as hypothesised
for Iphiclides podalirius (Linnaeus, 1758) and I. feistha-
melii (Duponchel, 1832) (Gaunet et al., 2019).
Wolbachia screening might support past hybridisation
events as in M. phoebe and M. ornata (T�oth et al.,
2017), and Pseudophilotes baton (Bergstr€asser, 1779)
and P. vicrama (Moore, 1865) (Such�a�ckov�a Barto�nov�a
et al., 2021).
Large datasets, compiled and extended in Mutanen

et al. (2016) and Dinc�a et al. (2021) demonstrate
what would happen if the minimalist approach would
have been used. The minimalist approach would have
accepted barcode-delimited species largely as is, with-
out taking into account morphological and life history
traits (as in the examples above), studying intraspe-
cific or closely related species group variation in
detail, or checking for the effect that Wolbachia could
have on results. In the majority of cases, barcodes
succeed in assigning specimens into proper taxonomic
species, but they still have their limits for a substan-
tial portion of taxa. It is fair to assume that a similar
portion of species would have been inaccurately
delimited in other, less explored insect groups. We
have to consider that the amount of non-monophyly
reflects the number of investigated specimens and that
it depends on species age, i.e., low divergence in
young species and high divergence in old species
(Mutanen et al., 2016).

DNA barcode-based minimalist taxonomy
does not address the taxonomic impediment
Are the false negative and false positive rates for cichl-
ids, butterflies and dragonflies discussed above accept-
able in the face of the pressing need to name vanishing
biodiversity? One could argue that a large proportion
would still be correctly named using only a DNA bar-
code. One problem with a minimalist DNA approach is
that we would be completely blind as to which taxa
might or might not be properly named. In other words,
given the paucity of taxonomic information gathered by
minimalist DNA taxonomy, invalid taxa would effect-
ively be ‘unknown unknowns’ – we know they would
exist but we would not easily know which ones they
might be without an in-depth reanalysis of the entire
group (see Meier et al., 2022). Thus, the amount of
taxonomic work needed to assess which species are
actually valid would surmount the work needed for a
proper first pass using an integrative approach, even
considering incremental contributions and subsequent
efforts as new taxa are discovered. Furthermore, it is
doubtful that taxonomy end-uses, such as conservation
and management actions, would gladly be based on
such high numbers of erroneously named and improp-
erly circumscribed species, in particular since we ought
to preserve and manage morphological and ecological
diversity as much as molecular (i.e., barcode) diversity.

A path forward
Much emphasis has been placed in automation of
molecular analyses and DNA barcoding has been surfing
this wave. Sequencing technologies have witnessed great
progress, as we quickly moved from automated Sanger
sequencing, to ‘next generation’ short read sequencing,
to ‘third generation’ long read sequencing in just two
decades. One recent application that combines barcoding
and high throughput sequencing is metabarcoding of
environmental DNA (eDNA) for biodiversity monitor-
ing. Metabarcoding of eDNA allows the simultaneous
assessment of barcodes of multiple taxa present in the
environment, for example from water, soil or air sam-
ples, as evidence of organisms’ presence (Taberlet et al.,
2018). A newer metagenomics approach is being devel-
oped that extends this principle to any type of DNA pre-
sent in the environment (i.e., beyond barcodes), with
gains in detection sensitivity, accuracy and precision,
even when applied to multicellular eukaryotes (e.g.,
Alves et al., 2019; Curto et al., in prep). These high
throughput approaches enable not only detecting known
biodiversity (i.e., formerly characterised barcodes or
genomes in known, previously described species), they
also show a great potential for discovering unknown

6 A. Zamani et al.



molecular diversity. Such environmental metagenomics
data could sensibly direct follow-up integrative studies
towards targeting the collection of potential new taxa
(to which the newly found molecular diversity belongs
to), effectively closing the gap between known and
unknown biodiversity.
Much less focus has been put on one of the bottle-

necks to taxonomic studies: morphological analyses. In
particular, one area that could benefit from automation,
speeding up informative species descriptions, and ameli-
orating the taxonomic impediment, would be automated
morphological classification and character discovery.
Over the last decades we have seen considerable
advancements in deep learning computational methods
such as convolutional neural networks (CNNs) and other
types of networks (e.g., Gaston & O’Neil, 2004). In par-
ticular, CNNs learn to extract relevant features from
photographs without human intervention (e.g., Kaya
et al., 2019; Valan et al., 2019). On the one hand, these
methods could speed up routine identifications of a large
proportion of taxa, freeing taxonomists for more creative
and critical tasks. Specimens that do not fit the groups
being classified could be flagged for more in-depth
identification by taxonomists, with the potential for dis-
covering new groups and undescribed species (e.g.,
Yang et al., 2021). On the other hand, as CNNs are
classifying individuals, they are ‘learning’ about traits
that group similar individuals and separate them from
other groups. Thus, these methods have a great potential
for discovering traits that discriminate between different
species, facilitating species descriptions and highlighting
traits that an experienced and dedicated taxonomist can
test for applicability, including of cryptic taxa for which
traditional characters have low resolution; of course, the
goal is not that CNNs replace an experienced taxono-
mist, but rather provide additional information (e.g.
highlighting potentially useful traits, verbal descriptions
of the traits) that would speed up the process and enrich
taxonomic descriptions. An investment on rapid automa-
tised biodiversity assessment was also recently proposed
by Ahrens et al. (2021).
Soon it might be possible to not have to make diffi-

cult choices between thoroughness and speed of taxo-
nomic treatments, in particular if cost and technology
continue progressing at a steady pace. For instance,
robotic coupling of sorting and classifying, photograph-
ing, and sequencing barcodes (without destroying the
specimens in question) has recently been implemented
for very small insects (Srivathsan et al., 2021; W€uhrl
et al., 2021). The initial investment might be steep for
individuals, but probably within the reach of institutions
and research projects dedicated to monitoring and
describing biodiversity. Progress in this area should

allow addressing the taxonomic impediment without
sacrificing rigour, utility or quality for speed
and quantity.
Bioinformatics could also play a major role in next-

generation taxonomy and enhancement of species
discovery. A promising example is a user-friendly, spe-
cimen-based toolkit called ‘iTaxoTools 0.10 (Vences
et al., 2021a). This software, based on open-source
Python code, includes tools focusing on species delimi-
tation and diagnosis and centred around specimen identi-
fiers, and at its current stage contains GUI versions of
six species delimitation programs (ABGD, ASAP,
DELINEATE, GMYC, PTP, tr2) and a simple thresh-
old-clustering delimitation tool, along with new Python
implementations of existing algorithms, including tools
to compute pairwise DNA distances, ultrametric time
trees based on non-parametric rate smoothing, species-
diagnostic nucleotide positions, standard morphometric
analyses, etc. This innovation could greatly accelerate
the rate of species discovery in hyperdiverse taxa in the
future, without compromising the quality of the
descriptions.
Another important aspect is the cost associated with

taxonomic activities (either personnel, robotics for
morphology, DNA barcoding, computing power, or col-
lection management), in particular if we are to adopt
new strategies to speed them up. In the current model, it
is undeniable that funding goes where perceived publi-
cation impacts are, and these are increasingly being
measured as paper citations, which in turn translate into
journal impact factors. The most direct way of recognis-
ing the importance of taxonomic work would be to
make citations of species descriptions or other relevant
taxonomic treatments (as argued elsewhere by Meier,
2017) mandatory for each taxon the study focuses on. In
a digital era, publication page limits and word limits
should be extended to allow the citing of original
descriptions or taxonomic revisions of focal species
studied. Considering that taxonomic descriptions are sci-
entific hypotheses (Pante et al., 2015), and that current
scientific practice rightfully calls for citing all relevant
literature (e.g., statistical software), it is only fair that
taxonomic literature receives equal treatment. Increased
funding is necessary to address shortages of trained tax-
onomists, and challenges faced by Natural History
museums and the utilisation of the biological collections
they hold (e.g., Ebach et al., 2011; Pinheiro et al., 2019;
Dup�err�e, 2020; Engel et al., 2021).
A frequently hidden aspect of DNA barcoding reli-

ability is that it is only as good as the assignment of
names to barcoded units. That requires careful identifi-
cation of the individuals that are barcoded, using ori-
ginal descriptions, subsequent revisions and keys, and
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ideally also examination of original type material. That
rigour is seldom practised or explicitly stated, especially
in labs focussed mainly on genetic or genomic analysis,
where morphological identification skills are not honed,
and where more work is done with tissue samples than
with actual specimens. Misidentification of the material
that later winds up serving as the barcode reference for
a species can cause knock-on errors for decades, until a
mismatch between the type material and the application
of the name is discovered. Even when a great deal of
rigour has been applied to the original assignment of
DNA barcodes to species names, DNA sequences from
historical type material have resulted in surprises that
have necessitated synonymisations and replacement
names (e.g., Vences et al., 2021b). In the absence of
that rigour, such mistakes will certainly be more com-
mon and necessitate even more revisionary work. For
this reason, we argue that vouchering of DNA barcoded
specimens in public museum collections should be
the norm.
Finally, as we have discussed above, morphological

comparison with existing nomina can be difficult in
truly cryptic clades, or where the historical type material
is damaged, ambiguous, or immature. However, it is no
longer the case that the assignment of such names must
necessarily be left to convention or best guesses. Major
strides have been made recently in sequencing historical
type and non-type material, some well over a century
old, or fixed in DNA-degrading chemicals like formalin,
and often based on very small quantities of tissue, in
what has been dubbed museomics (e.g. Erpenbeck et al.,
2016; Ruane & Austin, 2017; Evans et al., 2019;
McGuire et al. 2018; Rancilhac et al. 2020; Scherz
et al., 2020; Call et al., 2021; Straube et al., 2021a,
2021b; Vences et al., 2021b). This means that DNA
barcodes (and indeed substantial parts of the mitochon-
drial and nuclear genomes) can be sequenced from old
types, and used to more confidently assign names to lin-
eages. As discussed above (and argued by some of us
elsewhere; Zamani et al., 2021), assignment of previous
names should take priority over the establishment of
new names, in order to reduce the strain on the taxo-
nomic community.

Conclusions
As already argued by Wheeler (2008), taxonomy (i.e.,
species description) is different from instant species
identification and should be considered a science of its
own, with its own set of hypotheses to test. However,
minimalist taxonomy relegates taxonomy to a mere ser-
vice for other sciences. How can we move forward from
this? Do we really need to consider taxonomy just a

tool for the end-user, ignoring the epistemology that sets
taxonomy apart from other sciences? Probably the best
way forward is to set aside any baseless claim of super-
iority of one data type over another and focus instead
on building communities with the intention to create a
collaborative environment where researchers with differ-
ent sets of skills and passions can thrive. However, this
means setting aside ego and personal achievement for a
greater good: the discovery and study of what is left of
the Earth’s biodiversity. Is this achievable? Our
response to this is affirmative. The ichneumonid com-
munity, as an example, was formally reignited in 2019
in Basel (Klopfstein et al., 2019) with the aim to reduce
the taxonomic impediment of the group by gathering
people with different skill sets. Time will tell if the
community will last, but the simple fact that it has been
built points to the fact that collaboration, sharing data,
diversifying the fields of knowledge and building
bridges are achievable and, even more importantly,
desirable actions.
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